Skip to main content\(\newcommand{\set}[1]{\{1,2,\dotsc,#1\,\}}
\newcommand{\ints}{\mathbb{Z}}
\newcommand{\posints}{\mathbb{N}}
\newcommand{\rats}{\mathbb{Q}}
\newcommand{\reals}{\mathbb{R}}
\newcommand{\complexes}{\mathbb{C}}
\newcommand{\twospace}{\mathbb{R}^2}
\newcommand{\threepace}{\mathbb{R}^3}
\newcommand{\dspace}{\mathbb{R}^d}
\newcommand{\nni}{\mathbb{N}_0}
\newcommand{\nonnegints}{\mathbb{N}_0}
\newcommand{\dom}{\operatorname{dom}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\prob}{\operatorname{prob}}
\newcommand{\Prob}{\operatorname{Prob}}
\newcommand{\height}{\operatorname{height}}
\newcommand{\width}{\operatorname{width}}
\newcommand{\length}{\operatorname{length}}
\newcommand{\crit}{\operatorname{crit}}
\newcommand{\inc}{\operatorname{inc}}
\newcommand{\HP}{\mathbf{H_P}}
\newcommand{\HCP}{\mathbf{H^c_P}}
\newcommand{\GP}{\mathbf{G_P}}
\newcommand{\GQ}{\mathbf{G_Q}}
\newcommand{\AG}{\mathbf{A_G}}
\newcommand{\GCP}{\mathbf{G^c_P}}
\newcommand{\PXP}{\mathbf{P}=(X,P)}
\newcommand{\QYQ}{\mathbf{Q}=(Y,Q)}
\newcommand{\GVE}{\mathbf{G}=(V,E)}
\newcommand{\HWF}{\mathbf{H}=(W,F)}
\newcommand{\bfC}{\mathbf{C}}
\newcommand{\bfG}{\mathbf{G}}
\newcommand{\bfH}{\mathbf{H}}
\newcommand{\bfF}{\mathbf{F}}
\newcommand{\bfI}{\mathbf{I}}
\newcommand{\bfK}{\mathbf{K}}
\newcommand{\bfP}{\mathbf{P}}
\newcommand{\bfQ}{\mathbf{Q}}
\newcommand{\bfR}{\mathbf{R}}
\newcommand{\bfS}{\mathbf{S}}
\newcommand{\bfT}{\mathbf{T}}
\newcommand{\bfNP}{\mathbf{NP}}
\newcommand{\bftwo}{\mathbf{2}}
\newcommand{\cgA}{\mathcal{A}}
\newcommand{\cgB}{\mathcal{B}}
\newcommand{\cgC}{\mathcal{C}}
\newcommand{\cgD}{\mathcal{D}}
\newcommand{\cgE}{\mathcal{E}}
\newcommand{\cgF}{\mathcal{F}}
\newcommand{\cgG}{\mathcal{G}}
\newcommand{\cgM}{\mathcal{M}}
\newcommand{\cgN}{\mathcal{N}}
\newcommand{\cgP}{\mathcal{P}}
\newcommand{\cgR}{\mathcal{R}}
\newcommand{\cgS}{\mathcal{S}}
\newcommand{\bfn}{\mathbf{n}}
\newcommand{\bfm}{\mathbf{m}}
\newcommand{\bfk}{\mathbf{k}}
\newcommand{\bfs}{\mathbf{s}}
\newcommand{\bijection}{\xrightarrow[\text{onto}]{\text{$1$--$1$}}}
\newcommand{\injection}{\xrightarrow[]{\text{$1$--$1$}}}
\newcommand{\surjection}{\xrightarrow[\text{onto}]{}}
\newcommand{\nin}{\not\in}
\newcommand{\prufer}{\text{prüfer}}
\DeclareMathOperator{\fix}{fix}
\DeclareMathOperator{\stab}{stab}
\DeclareMathOperator{\var}{var}
\newcommand{\inv}{^{-1}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix C List of Notation
Symbol |
Description |
Location |
\(n!\) |
\(n\) factorial |
Paragraph |
\(P(m,n)\) |
number of permutations |
Paragraph |
\(\binom{n}{k}\) |
binomial coefficient |
Paragraph |
\(C(n,k)\) |
binomial coefficient (inline) |
Paragraph |
\(\binom{n}{k_1,k_2,k_3,\dots,k_r}\) |
multinomial coefficient |
Paragraph |
\(\cgP\) |
polynomial time problems |
Paragraph |
\(\cgN\cgP\) |
nondeterministic polynomial time problems |
Paragraph |
\(\deg_\bfG(v)\) |
degree of vertex \(v\) in graph \(\bfG\)
|
Paragraph |
\(\bfK_n\) |
complete graph on \(n\) vertices |
Paragraph |
\(\bfI_n\) |
independent graph on \(n\) vertices |
Paragraph |
\(\bfP_n\) |
path with \(n\) vertices |
Paragraph |
\(\bfC_n\) |
path with \(n\) vertices |
Paragraph |
\(\chi(\bfG)\) |
chromatic number of a graph \(\bfG\)
|
Paragraph |
\(\omega(\bfG)\) |
clique number of \(\bfG\)
|
Paragraph |
\(x\| y\) |
\(x\) and \(y\) are incomparable |
Paragraph |
\(\height(\bfP)\) |
height of poset \(\bfP\)
|
Paragraph |
\(\width(\bfP)\) |
width of poset \(\bfP\)
|
Paragraph |
\(D(x), D(S),D[x], D[S]\) |
down set |
Paragraph |
\(U(x), U(S), U[x], U[S]\) |
up set |
Paragraph |
\(\bfn\) |
chain with \(n\) points |
Paragraph |
\(\bfP+\bfQ\) |
disjoint sum of posets |
Paragraph |
\(\phi(n)\) |
Euler \(\phi\) function |
Paragraph |
\(\binom{p}{k}\) |
generalized binomial coefficient |
Definition 8.9 |
\(Af(n)\) |
advancement operator applied to \(f(n)\)
|
Paragraph |
\(P(A|B)\) |
probability of \(A\) given \(B\)
|
Paragraph |
\(C(X,k)\) |
family of all \(k\)-element subsets of \(X\)
|
Paragraph |
\(R(m,n)\) |
Ramsey number |
Paragraph |
\(\langle C\rangle\) |
equivalence class of \(C\)
|
Paragraph |
\(\stab_G(C)\) |
stabilizer of \(C\) under action of \(G\)
|
Paragraph |
\(\overline{E}\) |
complement of event \(E\)
|
Paragraph |
\(x\in X\) |
\(x\) is a member of the set \(X\)
|
Paragraph |
\(x\notin X\) |
\(x\) is not a member of the set \(X\)
|
Paragraph |
\(X\cap Y\) |
intersection of \(X\) and \(Y\)
|
Paragraph |
\(X\cup Y\) |
union of \(X\) and \(Y\)
|
Paragraph |
\(\emptyset\) |
empty set |
Paragraph |
\(\posints\) |
set of positive integers |
Paragraph |
\(\ints\) |
set of integers |
Paragraph |
\(\rats\) |
set of rational numbers |
Paragraph |
\(\reals\) |
set of real numbers |
Paragraph |
\(\nonnegints\) |
set of non-negative integers |
Paragraph |
\([n]\) |
\(\{1,2,\dots,n\}\) |
Paragraph |
\(X\subseteq Y\) |
\(X\) is a subset of \(Y\)
|
Paragraph |
\(X\subsetneq Y\) |
\(X\) is a proper subset of \(Y\)
|
Paragraph |
\(X\times Y\) |
cartesian product of \(X\) and \(Y\)
|
Paragraph |
\(f\colon X\rightarrow Y\) |
\(f\) is a function from \(X\) to \(Y\)
|
Paragraph |
\(f:X\injection Y\) |
\(f\) is an injection from \(X\) to \(Y\)
|
Paragraph |
\(f\colon X\surjection Y\) |
\(f\) is a surjection from \(X\) to \(Y\)
|
Paragraph |
\(f\colon X\bijection Y\) |
\(f\) is a bijection from \(X\) to \(Y\)
|
Paragraph |
\(|X|\) |
cardinality of set \(X\)
|
Paragraph |