Section B.8 Multiplication as a Binary Operation
We define a binary operation \(\times\text{,}\) called multiplication, on the set of natural numbers. When \(m\) and \(n\) are natural numbers, \(m\times n\) is also called the product of \(m\) and \(n\text{,}\) and it sometimes denoted \(m*n\) and even more compactly as \(mn\text{.}\) We will use this last convention in the material to follow. Let \(n\in \nonnegints\text{.}\) We define
\(n0=0\text{,}\) and
\(n(k+1)=nk +n\text{.}\)
Note that
\(10=0\) and
\(01=00+0=0\text{.}\) Also, note that
\(11=10+1=0+1=1\text{.}\) More generally, from (ii) and
Lemma B.19, we conclude that if
\(m,n\neq0\text{,}\) then
\(mn\neq0\text{.}\)
Theorem B.21. Left Distributive Law.
\(m(n+p)=mn + mp\text{,}\) for all \(m,n,p\in \nonnegints\text{.}\)
Proof.
Let \(m,n\in \nonnegints\text{.}\) Then
\begin{equation*}
m(n+0)=mn = mn +0 = mn+ m0.
\end{equation*}
Now assume \(m(n+k) = mn + mk\text{.}\) Then
\begin{align*}
m[n+(k+1)] \amp = m[(n+k)+1]=m(n+k)+m\\
\amp =(mn+mk)+m=mn+(mk+m)= mn+m(k+1).
\end{align*}
Theorem B.22. Right Distributive Law.
\((m+n)p=mp + np\text{,}\) for all \(m,n,p\in \nonnegints\text{.}\)
Proof.
Let \(m,n\in \nonnegints\text{.}\) Then
\begin{equation*}
(m+n)0 =0 = 0+0 = m0 + n0.
\end{equation*}
Now assume \((m+n)k = mk + nk\text{.}\) Then
\begin{align*}
(m+n)(k+1)\amp =(m+n)k+(m+n)= (mk+nk) +(m+n)\\
\amp =(mk+m)+(nk+n)=m(k+1)+n(k+1).
\end{align*}
Theorem B.23. Associative Law of Multiplication.
\(m(np) = (mn)p\text{,}\) for all \(m,n,p\in \nonnegints\text{.}\)
Proof.
Let \(m,n\in \nonnegints\text{.}\) Then
\begin{equation*}
m(n0)= m0 = 0 = (mn)0.
\end{equation*}
Now assume that \(m(nk)=(mn)k\text{.}\) Then
\begin{equation*}
m[n(k+1)]= m(nk + n)= m(nk) + mn =(mn)k + mn = (mn)(k+1).
\end{equation*}
The commutative law requires some preliminary work.
Lemma B.24.
\(n0= 0n=0\text{,}\) for all \(n\in \nonnegints\text{.}\)
Proof.
The lemma holds trivially when \(n=0\text{.}\) Assume \(k0=
0k=0\text{.}\) Then
\begin{equation*}
(k+1)0 =0 = 0+0= 0k+0=0(k+1).
\end{equation*}
Lemma B.25.
\(n1 =1n=n\text{,}\) for every \(n\in \nonnegints\text{.}\)
Proof.
\(01=00+0=0 =10\text{.}\) Assume \(k1=1k=k\text{.}\) Then
\begin{equation*}
(k+1)1=k1+11=1k+1=1(k+1).
\end{equation*}
Theorem B.26. Commutative Law of Multiplication.
\(mn=nm\text{,}\) for all \(m,n\in \nonnegints\text{.}\)
Proof.
Let \(m\in \nonnegints\text{.}\) Then \(m0=0m\text{.}\) Assume \(mk=km\text{.}\) Then
\begin{equation*}
m (k+1) = mk +m = km+m= km +1m=(k+1)m.
\end{equation*}